The Co-Ga-Ge (Cobalt-Gallium-Germanium) System

K.P. Gupta, The Indian Institute of Metals

An isothermal section of the Co-Ga-Ge has been established. Several ternary intermediate phases exist in the Co-Ga-Ge system.

Binary Systems

The Co-Ga system [Massalski2] (Fig. 1) has two intermediate phases: CoGa (β) and CoGa₃ (ν). Both these phases form through peritectic reactions L + (γ Co) $\leftrightarrow \beta$ at 1210 °C and L + $\beta \leftrightarrow \nu$ at 855 °C. A peritectic reaction L + $\nu \leftrightarrow$ (Ga) probably occurs very close to the Ga end at ~30.5 °C.

The Co-Ge system [Massalski2] (Fig. 2) has seven intermediate phases: Co₃Ge, Co₅Ge₂, β Co₅Ge₃ (δ), α Co₅Ge₃, CoGe, Co₅Ge₇, and CoGe₂. The β Co₅Ge₃ (δ) phase (earlier called the Co₂Ge phase) melts congruently at 1210 °C. At the Co end, the low-temperature cph (ϵ Co) phase is stabilized by Ge and a peritectic reaction L + (γ Co) \leftrightarrow (ϵ Co) occurs at 1125 °C. The CoGe and CoGe₂ phases form through peritectic reactions: L + β Co₅Ge₃ \leftrightarrow CoGe at 985 °C and L + CoGe \leftrightarrow CoGe₂ at 832 °C. The Co₃Ge, Co₅Ge₇, and Co₅Ge₃ \leftrightarrow Co₃Ge at ~770 °C, CoGe + CoGe₂ \leftrightarrow Co₅Ge₇ at 808 °C, and (ϵ Co) + β Co₅Ge₃ \leftrightarrow Co₅Ge₃ and L \leftrightarrow CoGe₂ + (Ge) occur at 1208 and 817 °C, respectively. The Co₃Ge and Co₅Ge₂ phases decompose through eutectoid reactions, $Co_3Ge \leftrightarrow (\epsilon Co) + \beta Co_5Ge$ and $Co_5Ge \leftrightarrow (\epsilon Co) + \beta Co_5Ge_3$ at ~645 and 362 °C, respectively. The βCo_5Ge_3 phase transforms to the αCo_5Ge_3 phase below 385 °C.

The Ga-Ge system (Fig. 3) [Massalski2] is a simple eutectic system; the eutectic reaction $L \leftrightarrow (Ga) + (Ge)$ is shown at the Ga end at 29.77 °C.

Binary and Ternary Phases

Eight intermediate phases form in the three binary systems. In the Co-Ga-Ge system, the existence of four ternary intermediate phases has been reported. The structure data of the binary and ternary phases of the Co-Ga-Ge system are given in Table 1.

Ternary System

In an exploratory study of the NiAs-related phases, [1957Ess] studied several binary and ternary alloys of the Co-Ga-Ge system. A CoGa alloy annealed at 420 °C showed the phase to be a CsCl-type structure with lattice parameter a = 0.2866 nm, which is slightly smaller than the value given in Table 1. Three ternary alloys of compositions Co₅₀Ga_{37.5}Ge_{12.5}, Co₅₀Ga₂₅Ge₂₅, and Co₅₀Ga_{12.5}Ge_{37.5}

Fig. 1 Co-Ga binary phase diagram [Massalski2]

Fig. 2 Co-Ge binary phase diagram [Massalski2]

Fig. 3 Ga-Ge binary phase diagram [Massalski2]

were annealed at 500 °C for 12 h. The 12.5 at.% Ge alloy was found to have two phases, predominantly consisting of CoGa, β phase and a second phase having lattice parameters a = 0.5010 nm and c = 0.4043 nm. The composition of the second phase, however, was not given. The alloy with 25 at.% Ge was found to have three phases: CoGa + a phase with composition Co₄GaGe₃ + a third phase that was not identified. The lattice parameters of the FeSi-type Co₄GaGe₃, (Λ) phase was found to be a = 0.4639 nm. The alloy with 37.5 at.% Ge was found to have two phases containing predominantly Λ phase (~90%) with a second phase, which was tentatively identified as a NiAs-related phase.

A more detailed investigation of the Co-Ga-Ge system was done by [1969Pan]. The alloys were arc melted under an argon atmosphere with component elements of >99.5 mass% purity. The alloys were annealed at 750 °C for 12 h in evacuated and sealed quartz capsules. The powder x-ray diffraction method was used for phase identification. An isothermal section at 750 °C was established and is given in Fig. 4.

In addition to the ternary intermediate phase Co₄GaGe₃ (Λ) earlier identified by [1957Ess], Fig. 4 shows the presence of two other ternary intermediate phases: Φ $(Co_{36}Ga_{37}Ge_{27})$ and Σ $(Co_{3}Ga_{2}Ge_{5})$. The $\beta Co_{5}Ge_{3}$ phase (δ) was found to extend to about 20 at.% Ga. The CoGa phase (β) was found to extend to ~35 at.% Ge. The Φ phase was found to exist very close to the intrusive β Co(Ga,Ge) phase. The β phase was found in equilibrium with the $(\gamma Co), \beta Co_5 Ge_3(\delta), \Lambda, \Phi, \Sigma, (Ge), and CoGe_3(\nu) phases.$ The Λ phase was found to extend along the 50 at.% Co line from about 28 at.% Ge to about 43 at.% Ge and was found in equilibrium with the δ , CoGe (ρ), Co₅Ge₇ (ζ), Σ , and Φ phases. The Σ phase extended along a 30 at.% Co line from about 44 at.% Ge to about 52 at.% Ge and was found in equilibrium with the Φ , Λ , ρ , ζ , CoGe₂ (ι), (Ge), and β phases. A three-phase equilibrium region (Ge) + (Ga) + ν was also indicated.

To determine the structure of the low-temperature form of Co_2Ge phase (αCo_5Ge_3 phase) [1969Pan] used an alloy of composition $Co_{67}Ge_{33}$ that was annealed at 550 °C and then cooled in air. Analysis of the powder diffraction pattern of this alloy showed it to have a Ni₂Si-type structure with lattice parameters a = 0.726 nm, b = 0.502 nm, and c = 0.382 nm.

The 750 °C isothermal section of the Co-Ga-Ge system [1969Pan] appears incomplete on the basis of the accepted binary phase diagrams. Since the (ϵ Co) phase exists at 750 °C in the Co-Ge system, two three-phase equilibrium regions (γ Co) + (ϵ Co) + β' and (ϵ Co) + β' + δ should exist

Fig. 4 A 750 $^{\circ}$ C isothermal section of the Co-Ga-Ge system [1969 Pan]

Phase designations	Composition	Pearson symbol	Space group	Туре	Lattice parameters, nm		
					а	b	с
γ	(yCo)	cF4	Fm3m	Cu			
ε	(eCo)	hP2	P6 ₃ /mmc	Mg			
Ga	(Ga)	<i>oC</i> 6	Cmca	αGa			
Ge	(Ge)	cF8	Fd3m	C(diamond)			
β	CoGa	cP2	Pm3m	CsCl	0.2878		
ν	CoGa ₃	<i>tP</i> 16	P4 ₂ /mnm	CoGa ₃	0.62365		0.64347
ξ	Co ₄ Ge						
β′	Co ₃ Ge	cP8	$Pm\bar{3}n$	Cr ₃ Si			
θ'	Co_5Ge_2						
δ	$\beta Co_5 Ge_3(a)$	hP6	$P6_3/mmc$	InNi ₂	0.3933		0.5014
δ'	$\alpha Co_5 Ge_3$	oP12	Pbnm	Ni ₂ Si	0.726(b)	0.502(b)	0.382(b)
ρ	CoGe	mC16	C2/m	CoGe	1.1648	0.3807	0.4945
		cP8	P2 ₁ 3	FeSi			
ζ	Co ₅ Ge ₇	<i>tI</i> 24	I4/mm	Co ₅ Ge ₇	0.764		0.581
ι	CoGe ₂	oC24	Aba2	PdSn ₂	0.5681	0.5681	1.0818
Λ	Co ₄ GaGe ₃	cP8	P2 ₁ 3	FeSi	0.4639		
Φ	Co ₃₆ Ga ₃₇ Ge ₂₇		$C\overline{3}m$	Ni ₂ Al ₃	0.401		0.483
Σ	Co ₃ Ga ₂ Ge ₅		Im3m	Ru ₃ Sn ₇	0.8395		
Г	$Co_6GaGe_3(c)$			Pd ₁₃ Tl ₉	0.783		0.496
(a) The $\beta Co_{\sigma}Ge_{\sigma}$	in earlier literature is ref	ferred to as the Co	-Ge(H) phase (b) I	attice parameter from	[1969Pan] (c) Th	eΓnhase exists as	a stable phase

 Table 1
 Binary and ternary phases of the Co-Ga-Ge system and their structure data

(a) The β Co₅Ge₃ in earlier literature is referred to as the Co₂Ge(H) phase. (b) Lattice parameter from [1969Pan]. (c) The Γ phase exists as a stable phase at 1000 °C, but does not exist at 750 °c.

Fig. 5 A probable 750 °C isothermal section (schematic) of the Co-Ga-Ge system

in the Co-Ga-Ge system. At 750 °C, Ga is in liquid state and hence a liquid region should exist at the Ga end and a three-phase equilibrium region $\nu + L + (Ge)$ should be present instead of a solid (Ga) + L + ν phase three-phase region. The phase equilibrium involving the Φ phase is also incomplete in Fig. 4. Two three-phase equilibrium regions $\Lambda + \Phi + \beta$ and $\Phi + \beta + \Sigma$ should also exist. A probable 750 °C isothermal section showing schematically the expected phase regions and the three-phase equilibrium triangles (shown with dashed lines) is given in Fig. 5.

The results of [1969Pan] at 750 °C and of [1957Ess] at 500 °C, however, suggest phase equilibria in the Co-Ga-Ge system to be somewhat different at the two temperatures. While [1969Pan] showed that the alloy of composition $Co_{50}Ga_{12.5}Ge_{37.5}$ lies in the Λ phase region at 750 °C, the same alloy at 500 °C [1957Ess] has two phases, ~90% Λ + a phase related to the NiAs phase. Since the NiAs-related δ phase has been found in equilibrium with the Λ phase at 750 °C, it is possible that the observed NiAs-related phase at 500 °C is the δ phase. Thus it appears that the Λ phase region is smaller and does not extend beyond ~35 at.% Ge at 500 °C. Moreover, the phase with lattice parameters a = 0.5010 nm and c = 0.4043 nm, observed in the alloy containing 50 at.% Co, 37.5 at.% Ga, and 12.5 at.% Ge at 500 °C [1957Ess], was not found by [1969Pan] at 750 °C.

[1969Pan] annealed an alloy of composition $Co_{60}Ga_{10}Ge_{30}$, which is single-phase δ at 750 °C, at 1000 °C for 8 h, and observed that a new phase Γ exists at 1000 °C. The Γ phase was identified to be a $Pd_{13}Tl_9$ -type phase with lattice parameters a = 0.783 nm and c = 0.496 nm. All these results indicate that the phase equilibria in Co-Ga-Ge system at temperatures higher and lower than 750 °C is possibly significantly different than established by [1969Pan] at 750 °C. Further work will thus be necessary to study phase equilibria in the Co-Ga-Ge system at various temperatures above and below 750 °C.

References

- **1957Ess:** P. Esslinger and K. Schubert, On the Systematics of the NiAs Family of Structures. I. Distribution Range of the NiAs Family of Structures, *Z. Metallkd.*, 1957, **48**, 126-133, in German. (Crys Structure)
- **1969Pan:** P.K. Panday and K. Schubert, Investigation of Structures in Some T-B₃-B₄ Alloys (T = Mn, Fe, Co, Ir, Ni, Pd, B₃-Al, Ga, Tl, B₄-Si, Ge), *J. Less Common Met.*, 1969, **18**, 175-202. (Phase equilibria; #)

*Indicates key paper.

#Indicates presence of a phase diagram.

Co-Ga-Ge evaluation contributed by **K.P. Gupta**, The Indian Institute of Metals, Metal House, Plot 13/4, Block AQ, Sector V, Calcutta, India. Literature searched through 1997. Dr. Gupta is the Alloy Phase Diagram Co-Category Program Editor for ternary alloys.